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PRINCIPLES OF OPERATION-REVIEW

1) Incoming radiation is coupled through an antenna element (engineered to guide
surface plasmon waves (skin effect) at higher frequencies) to create a modulated

AC electric field
2) Direct current harvested across a matched MIM tunneling diode barrier
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Characteristics (Solar radiation)
— Average radiation power/unit area equal to 1500 W/m?
— Over 95% of spectrum contained in 2Mm (150 THz)
to 0.3 Mm (1000 THz) band; 4:1 Bandwidth
— Time Harmonic components are not polarized and T
therefore considered as elliptically polarized
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COUPLING- INCOMING SOLAR RADIATION

 Design Strategy

3

Antenna (Rectification) scales with frequency
enabling low frequency performance (i.e.,
efficiency) validation

Broadband (4:1) grid array (with loaded grids < 0.51 )
is ideally suited due to the symmetry of horizontally
and vertically polarized waves

Since polarization of the sun is statistical, two feeds
for each orthogonal polarization

Prior art: low frequency, “rectenna” concepts
demonstrated >85% efficient (full wave rectify)

Capitalize on frequency independent characteristics
of diode
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RECTIFICATION: FREQUENCY DEPENDENCE

Fermi Level
€

* Above THz: Modulation Optical L
N .. < Aviv; .. Current  Induced
— |-V characteristics show additional peaks due t N | 0 t \C/Jggf;é

to field-assisted electron tunneling
Photon-Assisted

processes qrhss
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— Increased power output within an integral hn o Thermal
number of photon energies, hn/e, of the © % CDark
. urrent
diode turn-on voltage
Current

e Below THz:

) . . | Dark, “classical” I-V
— Response rolls over to classical rectification

(hn/e is smaller than the voltage scale of the — Volage
DC non-linearity)
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SOLAR ENERGY HARVESTING - FOM

e GOALS: Exceed theoretical limit (i.e. 30%) of single junction solar cells in solar spectrum

# of electrons by which current chapges
. . JU 70
# of incident photons

— Quantum efficiency: i.e.
— Conversion efficiency: > 40% in THz region (i.e quantum regime)

— Power density: > 30 mW/cm? (> 30 mW out from incoming 100 mW/cm?)

e APPROACH: Due to inherent frequency scaling attributes, validate concept and
performance at low frequency; transition to high (quantum) frequencies.

— Barrier Engineering in tunneling diode at both low (micron scale) and high (nano scale)

frequency

— Monolithic, parallel processing provides geometric scaling
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LOW FREQUENCY (10 GHz) DEMONSTRATION

* Measured efficiency @ 10 GHz with inexpensive Schottky diodes (4:1 bandwidth)
» Efficiency limited only by saturation of diodes

* Both 30 GHz and monolithically integrated 90 GHz demos in progress (w/ MIM diodes)
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PARAMETRIC STUDY OF MIM TUNNEL DIODES

* Assumes trapezoidal barrier from BDR Model
- Df =.02v

Metal Work
Function Difference  Df ¢
2
Barrier Height f, Fermi Energy =.06V
DN
Barrier Thickness 7 ;
*Barrier Parameter Space s L= o Df =.18Vv
Heights: 0.02 —®2V " ' |
A5 JHM]
eThickness: 2.5 —®5nm . wwo| / N
«Current test system: Nb/NbOx/Ag "'"f* i F———; bf =.32v
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 Balance between quantum efficiency ( 93%) and Ty or ﬁ ol Df =08V
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*Engineer non-linearity and asymmetry (conversion
efficiency non-optimized)
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* |-V response as a function of decreasing barrier thickness (mscale MIM)
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Current Density (A m

BARRIER ENGINEERING-MODEL VALIDATION

Current Density (A m?)
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OPTICAL RECTIFICATION @ 30 THz

*Observed optical rectification with a R.T., unbiased planar MIM diode

Demonstrated high current capacity (tested to 500mV) and process yield
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SUMMARY-UNIQUE FEATURES

* Energy Coupling
— Planar, broadband (4:1) grid array structure to couple to incoming elliptically
polarized (complex) wave (engineerable coupling)

— Efficiency limited only by saturation of diode (Schottky)

« Rectification AC ™ (both classical and quantum)

— Vacuum deposited, planar (lithographic) MIM diode structure with minimal parasitic
capacitance loss

— Ability to optimize, via engineering of non-linearity/asymmetry, classical responsivity;
first ever zero bias optical response @ 30 THz for planar MIM

— Ability to balance high quantum efficiency and impedance matching to achieve high
conversion efficiency (current challenge)

» Design

— Frequency scaling: performance optimization at low frequency, large size and then scale
to high frequency

— Geometric scaling: Large area, parallel processing (i.e., soft lithography/self organizing
arrays) with monolithic integration
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Applications - Energy Harvesting

* Optical Frequencies (long term payoff)

— Direct power integration into microsystems, such as micro-sensors,
micro-electromechanical, and micro-air vehicles

— In combination with rechargeable battery, high efficiency power source
for portable and remote electronics

* Millimeter/Microwave Frequencies (near term payoff)

— Recycling (DC power generation)/shielding of stray RF fields at antenna
tower stations (also cellular base stations)

— Stealth (broadband absorption of reflected, complex polarized source?)
— “Spin-off”:
» Passive millimeter ranging @ 90 GHz (concept in progress)
» Active metal detection (security) @ 90 GHz
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Applications - Energy Harvesting (cont)

* Infrared Frequencies
— Harvest IR radiation from blackbody sources at off-normal incidence

— Use (3-D) monopole array to couple with near/far field of source (i.e., TPV
emitter or low temperature source such as fuel, wood, etc.)

— Feasibility demonstration using low-cost, electrochemical processing
techniques
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Applications - Other

* Imaging/Sensing/Detection
— Performance attributes

» Extremely high bandwidth (30 THz) => high speed device (optic); as
compared to 3-5 THz for high speed Schottky diode (SOA)

» High non-linearity => high quantum efficiency (93%)

» Un-cooled operation (i.e., room temperature IR detection)
— Fabrication

» Low-cost, parallel processing

» Monolithic integration (incorporate sensor with downstream electronics)

* Integration of multiple functions into single platform

(i.e., antenna, energy harvesting, detection, etc.) I
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